Hagley Park South - Garage
PRK 1507 BLDG 011 EQ2
Detailed Engineering Evaluation
Quantitative Assessment Report
Christchurch City Council

Hagley Park South - Garage

Quantitative Assessment Report

Prepared By
Timothy Day
Graduate Structural Engineer

Reviewed By
Simon Biggs
Structural Engineer

Approved By
Paul Campbell
Principal Structural Engineer
CPEng 197688

Opus International Consultants Ltd
Christchurch Office
20 Moorhouse Avenue
PO Box 1482, Christchurch Mail Centre, Christchurch 8140
New Zealand

Telephone: +64 3 363 5400
Facsimile: +64 3 365 7858

Date: April 2013
Reference: 6-QUCC1.85
Status: Final

© Opus International Consultants Ltd 2013
Summary

Hagley Park South - Garage
PRK 1507 BLDG 011 EQ2

Detailed Engineering Evaluation
Quantitative Report - Summary
Final

Background
This is a summary of the quantitative report for the Hagley Park South Garage, and is based on the Detailed Engineering Evaluation Procedure document (draft) issued by the Structural Advisory Group on 19 July 2011 and visual inspections on the 27 July 2012 and 7 February 2013.

Key Damage Observed
No seismic damage was identified at the time of inspection.

Critical Structural Weaknesses
No potential critical structural weaknesses have been identified.

Indicative Building Strength
Based on the information available, and from undertaking a quantitative assessment, the building’s seismic capacity has been assessed at 70%NBS. However, due to the lightweight nature of this building, the lateral load design will be governed by wind load and as such the wind capacity will be less than 70% NBS.

Recommendations
We recommend that in light of the 70%NBS seismic capacity, that the building be investigated for wind load capacity and strengthening proposals be developed to achieve a wind capacity of 100% or more.
Contents

Summary ... i

1. Introduction .. 1

2. Compliance .. 1

3. Earthquake Resistance Standards .. 4

4. Building Description .. 7

5. Survey .. 7

6. General Observations ... 8

7. Detailed Seismic Assessment ... 8

8. Summary of Geotechnical Appraisal ... 9

9. Conclusions ... 9

10. Recommendations .. 10

11. Limitations .. 10

12. References ... 10

Appendix 1 - Photographs

Appendix 2 – CERA DEE Spreadsheet
1 Introduction

Opus International Consultants Limited has been engaged by Christchurch City Council to undertake a detailed seismic assessment of the Hagley Park South Garage, located at Hagley Park, Christchurch following the Canterbury Earthquake Sequence since September 2010.

The purpose of the assessment is to determine if the building is classed as being earthquake prone in accordance with the Building Act 2004.

The seismic assessment and reporting have been undertaken based on the qualitative and quantitative procedures detailed in the Detailed Engineering Evaluation Procedure (DEEP) document (draft) issued by the Structural Engineering Society (SESOC) [3] [4].

2 Compliance

This section contains a brief summary of the requirements of the various statutes and authorities that control activities in relation to buildings in Christchurch at present.

2.1 Canterbury Earthquake Recovery Authority (CERA)

CERA was established on 28 March 2011 to take control of the recovery of Christchurch using powers established by the Canterbury Earthquake Recovery Act enacted on 18 April 2011. This act gives the Chief Executive Officer of CERA wide powers in relation to building safety, demolition and repair. Two relevant sections are:

Section 38 – Works

This section outlines a process in which the chief executive can give notice that a building is to be demolished and if the owner does not carry out the demolition, the chief executive can commission the demolition and recover the costs from the owner or by placing a charge on the owners' land.

Section 51 – Requiring Structural Survey

This section enables the chief executive to require a building owner, insurer or mortgagee to carry out a full structural survey before the building is re-occupied.

We understand that CERA require a detailed engineering evaluation to be carried out for all buildings (other than those exempt from the Earthquake Prone Building definition in the Building Act). CERA have adopted the Detailed Engineering Evaluation Procedure (DEEP) document (draft) issued by the Structural Engineering Society (SESOC) on 19 July 2011. This document sets out a methodology for both initial qualitative and detailed quantitative assessments.

It is anticipated that a number of factors, including the following, will determine the extent of evaluation and strengthening level required:

1. The importance level and occupancy of the building.
2. The placard status and amount of damage.

3. The age and structural type of the building.

Christchurch City Council requires any building with a capacity of less than 34% of New Building Standard (including consideration of critical structural weaknesses) to be strengthened to a target of 67% as required under the CCC Earthquake Prone Building Policy.

2.2 Building Act

Several sections of the Building Act are relevant when considering structural requirements:

Section 112 - Alterations

This section requires that an existing building complies with the relevant sections of the Building Code to at least the extent that it did prior to the alteration. This effectively means that a building cannot be weakened as a result of an alteration (including partial demolition).

The Earthquake Prone Building policy for the territorial authority shall apply as outlined in Section 2.3 of this report.

Section 115 – Change of Use

This section requires that the territorial authority is satisfied that the building with a new use complies with the relevant sections of the Building Code ‘as near as is reasonably practicable’.

This is typically interpreted by territorial authorities as being 67% of the strength of an equivalent new building or as near as practicable. This is also the minimum level recommended by the New Zealand Society for Earthquake Engineering (NZSEE).

Section 121 – Dangerous Buildings

This section was extended by the Canterbury Earthquake (Building Act) Order 2010, and defines a building as dangerous if:

1. In the ordinary course of events (excluding the occurrence of an earthquake), the building is likely to cause injury or death or damage to other property; or
2. In the event of fire, injury or death to any persons in the building or on other property is likely because of fire hazard or the occupancy of the building; or
3. There is a risk that the building could collapse or otherwise cause injury or death as a result of earthquake shaking that is less than a ‘moderate earthquake’ (refer to Section 122 below); or
4. There is a risk that other property could collapse or otherwise cause injury or death; or
5. A territorial authority has not been able to undertake an inspection to determine whether the building is dangerous.

Section 122 – Earthquake Prone Buildings

This section defines a building as earthquake prone (EPB) if its ultimate capacity would be exceeded in a ‘moderate earthquake’ and it would be likely to collapse causing injury or death, or damage to other property.

A moderate earthquake is defined by the building regulations as one that would generate loads 33% of those used to design an equivalent new building.

Section 124 – Powers of Territorial Authorities

This section gives the territorial authority the power to require strengthening work within specified timeframes or to close and prevent occupancy to any building defined as dangerous or earthquake prone.

Section 131 – Earthquake Prone Building Policy

This section requires the territorial authority to adopt a specific policy for earthquake prone, dangerous and insanitary buildings.

2.3 Christchurch City Council Policy

Christchurch City Council adopted their Earthquake Prone, Dangerous and Insanitary Building Policy in 2006. This policy was amended immediately following the Darfield Earthquake on 4 September 2010.

The 2010 amendment includes the following:

1. A process for identifying, categorising and prioritising Earthquake Prone Buildings, commencing on 1 July 2012;

2. A strengthening target level of 67% of a new building for buildings that are Earthquake Prone;

3. A timeframe of 15-30 years for Earthquake Prone Buildings to be strengthened; and,

4. Repair works for buildings damaged by earthquakes will be required to comply with the above.

The council has stated their willingness to consider retrofit proposals on a case by case basis, considering the economic impact of such a retrofit.

If strengthening works are undertaken, a building consent will be required. A requirement of the consent will require upgrade of the building to comply ‘as near as is reasonably practicable’ with:

- The accessibility requirements of the Building Code.
• The fire requirements of the Building Code. This is likely to require a fire report to be submitted with the building consent application.

Where an application for a change of use of a building is made to Council, the building will be required to be strengthened to 67% of New Building Standard or as near as is reasonably practicable.

2.4 Building Code

The Building Code outlines performance standards for buildings and the Building Act requires that all new buildings comply with this code. Compliance Documents published by The Department of Building and Housing can be used to demonstrate compliance with the Building Code.

On 19 May 2011, Compliance Document B1: Structure was amended to include increased seismic design requirements for Canterbury as follows:

- increase in the basic seismic design load for the Canterbury earthquake region (Z factor increased to 0.3 equating to an increase of 36 – 47% depending on location within the region);
- Increased serviceability requirements.

2.5 Institution of Professional Engineers New Zealand (IPENZ) Code of Ethics

One of the core ethical values of professional engineers in New Zealand is the protection of life and safeguarding of people. The IPENZ Code of Ethics requires that:

Members shall recognise the need to protect life and to safeguard people, and in their engineering activities shall act to address this need.

1.1 Giving Priority to the safety and well-being of the community and having regard to this principle in assessing obligations to clients, employers and colleagues.

1.2 Ensuring that responsible steps are taken to minimise the risk of loss of life, injury or suffering which may result from your engineering activities, either directly or indirectly.

All recommendations on building occupancy and access must be made with these fundamental obligations in mind.

3 Earthquake Resistance Standards

For this assessment, the building’s earthquake resistance is compared with the current New Zealand Building Code requirements for a new building constructed on the site. This is expressed as a percentage of new building standard (%NBS). The loadings are in accordance with the current earthquake loading standard NZS1170.5 [1].
A generally accepted classification of earthquake risk for existing buildings in terms of %NBS that has been proposed by the NZSEE 2006 [2] is presented in Figure 1 below.

![Figure 1: NZSEE Risk Classifications Extracted from table 2.2 of the NZSEE 2006 AISPBE Guidelines](image)

Table 1 below compares the percentage NBS to the relative risk of the building failing in a seismic event with a 10% risk of exceedance in 50 years (i.e. 0.2% in the next year).

<table>
<thead>
<tr>
<th>Percentage of New Building Standard (%NBS)</th>
<th>Relative Risk (Approximate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>100</td>
<td><1 time</td>
</tr>
<tr>
<td>80-100</td>
<td>1-2 times</td>
</tr>
<tr>
<td>67-80</td>
<td>2-5 times</td>
</tr>
<tr>
<td>33-67</td>
<td>5-10 times</td>
</tr>
<tr>
<td>20-33</td>
<td>10-25 times</td>
</tr>
<tr>
<td><20</td>
<td>>25 times</td>
</tr>
</tbody>
</table>

3.1 Minimum and Recommended Standards

Based on governing policy and recent observations, Opus makes the following general recommendations:
3.1.1 Occupancy

The Canterbury Earthquake Order in Council 16 September 2010, modified the meaning of “dangerous building” to include buildings that were identified as being EPB’s. As a result of this, we would expect such a building would be issued with a Section 124 notice, by the Territorial Authority, or CERA acting on their behalf, once they are made aware of our assessment. Based on information received from CERA to date and from the DBH guidance document dated 12 June 2012 [6], this notice is likely to prohibit occupancy of the building (or parts thereof), until its seismic capacity is improved to the point that it is no longer considered an EPB.

3.1.2 Cording

Where there is an overhead falling hazard, or potential collapse hazard of the building, the areas of concern should be cordoned off in accordance with current CERA/territorial authority guidelines.

3.1.3 Strengthening

Industry guidelines (NZSEE 2006 [2]) strongly recommend that every effort be made to achieve improvement to at least 67%NBS. A strengthening solution to anything less than 67%NBS would not provide an adequate reduction to the level of risk.

It should be noted that full compliance with the current building code requires building strength of 100%NBS.

3.1.4 Our Ethical Obligation

In accordance with the IPENZ code of ethics, we have a duty of care to the public. This obligation requires us to identify and inform CERA of potentially dangerous buildings; this would include earthquake prone buildings.

1 This Order only applies to buildings within the Christchurch City, Selwyn District and Waimakariri District Councils authority
4 Building Description

4.1 Building Description

The Hagley Park South Garage is a single storey timber framed building with a lightweight profiled steel roof and external wall cladding. The building has no internal wall or ceiling linings. There are diagonal steel strap braces (not crossed) in the roof plane but no strap bracing in the walls.

5 Survey

Visual inspections were carried out on the 27 July 2012 and 7 February 2013.

The building currently has no earthquake rapid assessment placard in place.

No copies of structural drawings have been obtained for the building. Our observations and measure-up have been used to confirm the structural systems, to investigate potential critical structural weaknesses (CSW’s) wherever possible, and identify details which would require particular attention.

There was no observed damage in the building as a result of the recent earthquakes.
6 General Observations

From our visual site inspections there appears to be no dedicated bracing systems compliant with current codes. Typically we would expect to find either a ceiling diaphragm or roof strap cross bracing, and in the walls either nailed sheet linings, diagonal timber braces, or strap cross bracing, to resist lateral forces. There are diagonal roof strap braces (not crossed) but they are attached to the purlins midspan, creating an ineffective load path of weak axis bending of the purlins.

In recent earthquake events the seismic load would have been resisted by mechanisms which we would not normally consider as bracing elements. That is, the external profiled roof and wall sheeting would have acted as a diaphragm or bracing walls to resist lateral loads. The shear strength of this profiled sheet is not documented, hence a thorough desktop assessment of its capacity cannot be made. The sheeting will nevertheless be reliant on the shear action of the nails or screws around the perimeter of roof diaphragms or bracing walls.

7 Detailed Seismic Assessment

7.1 Critical Structural Weaknesses

The term Critical Structural Weakness (CSW) refers to a component of a building that could contribute to increased levels of damage or cause premature collapse of a building.

No potential CSW’s have been identified for this building.

7.2 Seismic Coefficient Parameters

The seismic design parameters based on current design requirements from NZS1170.5:2004 and the NZBC clause B1 for this building are:

- Site soil class D, clause 3.1.3 NZS 1170.5:2004;
- Site hazard factor, $Z=0.3$, B1/VM1 clause 2.2.14B;
- Return period factor, $R_u = 1.0$ from Table 3.5, NZS 1170.5:2004, for an Importance Level 2 structure with a 50 year design life;
- Structural Ductility Factor, $\mu_{\text{max}} = 1.25$
7.3 Detailed Seismic Assessment Results

A summary of the structural seismic performance of the building is shown in the following table. Note that the values given represent the worst performing elements in the building, as these effectively define the building’s capacity. Other elements within the building may have significantly greater capacity when compared with the governing elements.

<table>
<thead>
<tr>
<th>Structural Element/System</th>
<th>Failure mode and description of limiting criteria</th>
<th>% NBS based on calculated capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls</td>
<td>Nail shear</td>
<td>70%</td>
</tr>
</tbody>
</table>

The seismic capacity of the building has been calculated to be 70% NBS. However, due to the lightweight nature of the building, the lateral load design will be governed by wind load and the wind load capacity will be less than 70% NBS.

7.4 Limitations and Assumptions in Results

The analysis and assessment of the building was based on it being in an undamaged state. There may have been damage to the building that was unable to be observed that could cause the capacity of the building to be reduced; therefore the current capacity of the building may be lower than that stated.

The results have been reported as a %NBS and the stated value is that obtained from our analysis and assessment. Despite the use of best national and international practice in this analysis and assessment, this value contains uncertainty due to the many assumptions and simplifications which are made during the assessment. These include:

a. Simplifications made in the analysis, including boundary conditions such as foundation fixity.

b. Assessments of material strengths based on limited drawings, specifications and site inspections

c. The normal variation in material properties which change from batch to batch.

d. Approximations made in the assessment of the capacity of each element, especially when considering the post-yield behaviour.

8 Summary of Geotechnical Appraisal

Due to a lack of observed ground damage, no specific geotechnical assessment has been undertaken for this site. The site parameters used for the structural analysis have been taken as site subsoil class D, based on geotechnical advice.

9 Conclusions

The building has a seismic capacity of 70% NBS and is therefore not classed as an earthquake prone building under the NZSEE classification system. We note that the building has not been
built in accordance with current building standards; in particular there is a lack of adequate bracing provided throughout the building. However we observed no damage as a result of the recent earthquake events most likely due to the low seismic loads generated in this lightweight building.

In the absence of other wall bracing elements, the profiled external wall and roof cladding will provide some degree of bracing.

The design of this building will be governed by wind loading and therefore the %NBS of this building for wind loads will be less than 70% NBS.

The existing foundations have performed satisfactorily, and no geotechnical testing is required.

10 Recommendations

We recommend that in light of the 70%NBS seismic capacity, that the building be investigated for wind load capacity and strengthening proposals be developed to achieve a wind capacity of 100% or more.

11 Limitations

a) This report is based on an inspection of the structure with a focus on the damage sustained from the 22 February 2011 Canterbury Earthquake and aftershocks only. Some non-structural damage is mentioned but this is not intended to be a comprehensive list of non-structural items.

b) Our professional services are performed using a degree of care and skill normally exercised, under similar circumstances, by reputable consultants practicing in this field at the time.

c) This report is prepared for the CCC to assist with assessing remedial works required for council buildings and facilities. It is not intended for any other party or purpose.

12 References

Appendix 1 - Photographs
<table>
<thead>
<tr>
<th>No.</th>
<th>Item description</th>
<th>Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>View of front of garage</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Northern side of building</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Patio on southern side of building</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Timber truss roof with diagonal straps in roof sheeting plane. No ceiling.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Timber framed walls.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Internal view of gable back wall. No internal lining. Timber framed.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2 – CERA DEE Spreadsheet
Location

- **Building Name**: Hagley Park South Garage
- **Reviewer**: Paul Campbell
- **Building Address**: Dunedin Road
- **Legal Description**: Company project number: QUCC1.85
- **Company phone number**: 03 363 5400
- **GPS south**: 43 32 3.72
- **GPS east**: 172 37 18.28
- **Company**: Opus International Consultants

Site

- **Site slope**:
- **Soil type**:
- **Site Class (to NZS1170.5)**: D
- **Proximity to waterway (m, if <100m)**: if so, when (year)
- **Proximity to cliff top (m, if <100m)**: If ground improvement on site, describe:
- **Proximity to cliff base (m, if <100m)**: Approx site elevation (m): 2.60

Building

- **No. of storeys above ground**: 1 single storey = 1
- **Ground floor split?**: no
- **Foundation type**: strip footings if Foundation type is other, describe:
- **Building height (m)**: 2.60 height from ground to level of uppermost seismic mass (for IEP only) (m):
- **Floor footprint area (approx)**: 45
- **Age of Building (years)**: 15
- **Date of design**: 1992-2004
- **Strengthening present?**:
- **Use (ground floor)**: public
- **Use notes (if required)**: brief strengthening description:
- **Importance level (to NZS1170.5)**: IL2

Gravity Structure

- **Gravity System**:
 - Load bearing walls
 - Timber framed roof, purlin type and cladding
 - Metal cladding on timber trusses
- **Floors**:
 - Concrete flat slab
- **Beams**:
 - Timber
gold
- **Columns**:
- **Walls**:

Lateral load resisting structure

- **Lateral system along**:
 - Lightweight timber framed walls
 - Ductility assumed, \(\mu = 1.25 \)
 - Period along: 0.40
 - Total deflection (ULS) (mm):
 - 0.00 estimate or calculation?
 - 0.00 estimated
 - Maximum interstorey deflection (ULS) (mm):
 - 0.00 estimate or calculation?
 - 0.00 estimated
- **Lateral system across**:
 - Lightweight timber framed walls
 - Ductility assumed, \(\mu = 1.25 \)
 - Period across: 0.40
 - Total deflection (ULS) (mm):
 - 0.00 estimate or calculation?
 - 0.00 estimated
 - Maximum interstorey deflection (ULS) (mm):
 - 0.00 estimate or calculation?
 - 0.00 estimated

Separations

- **north (mm)**: leave blank if not relevant
- **east (mm)**:
- **south (mm)**:
- **west (mm)**:

Non-structural elements

- **Stairs**:
- **Wall cladding**: profiled metal describe corr iron
- **Roof Cladding**: Metal describe corr iron
- **Glazing**: timber frames
gold
- **Ceilings**: none
gold
- **Services**:

Available documentation

- **Architectural**: none original designer name/date
- **Structural**: none original designer name/date
- **Mechanical**: none original designer name/date
- **Electrical**: none original designer name/date
- **Geotech report**: none original designer name/date

Damage

Site

- **Site performance**: good
- **Settlement**: none observed
- **Differential settlement**: none observed
- **Liquefaction**: none apparent
- **Lateral Spread**: none apparent
- **Differential lateral spread**: none apparent
- **Ground cracks**: none apparent
- **Damage to area**: none apparent

Building

- **Current Placard Status**: describe
- **Along Damage ratio**: 0%
 - Describe how damage ratio arrived at:
- **Across Damage ratio**: 0%
 - Describe how damage ratio arrived at:

Diaphragms

- **Damage**: describe

CSWs:

- **Damage**: describe

Pounding:

- **Damage**: describe

Non-structural:

- **Damage**: describe

Recommendations

- **Level of repair/strengthening required**: none
- **Building Consent required**: Describe
- **Interim occupancy recommendations**: Describe
- **Along**:
 - Assessed %NBS before IEP:
 - Assessed %NBS after IEP:
 - 70%
- **Across**:
 - Assessed %NBS before IEP:
 - Assessed %NBS after IEP:
 - 70%

Note: Define along and across in detailed report! If IEP not used, please detail assessment methodology: