Akaroa Place de la Poste

Detailed Engineering Evaluation
Quantitative Report

© Opus International Consultants Ltd 2012
Background
This is a summary of the quantitative report for the toilet building in Akaroa Place de la Poste. The summary is based on the Detailed Engineering Evaluation Procedure document (draft) issued by the Structural Advisory Group, visual inspections on 11 July 2012, and calculations.

Indicative Structure Strength
Based on the information available, and from undertaking a quantitative assessment, the structure’s original capacity has been assessed to be greater than 100%NBS both along and across the structure and therefore is not an earthquake risk.

Recommendations
As the structure exceeds the required %NBS and due to the lack of visible damage, no further action is recommended.
Contents

1. Introduction ... 1
2. Compliance ... 1
3. Earthquake Resistance Standards .. 4
4. Building Description .. 7
5. Survey .. 7
6. General Observations .. 7
7. Detailed Seismic Assessment .. 7
8. Conclusions ... 9
9. Recommendations ... 9
10. Limitations ... 9
11. References .. 9

Appendix A – Photographs

Appendix B – Building Plan

Appendix C – CERA DEEP Data Sheet
1 Introduction

Opus International Consultants Limited has been engaged by Christchurch City Council (CCC) to undertake a detailed seismic assessment of the Akaroa Place de la Poste toilet building located at 2 Rue Balguerie, Akaroa. This report was commissioned following the M6.3 Christchurch earthquake on 22 February 2011.

The purpose of the assessment is to determine if the structure is classed as being earthquake prone in accordance with the Building Act 2004.

The seismic assessment and reporting have been undertaken based on the qualitative and quantitative procedure detailed in the Detailed Engineering Evaluation Procedure (DEEP) document (draft) issued by the Structural Engineering Society (SESOC) on 19 July 2011.

2 Compliance

This section contains a brief summary of the requirements of the various statutes and authorities that control activities in relation to buildings in Christchurch at present.

2.1 Canterbury Earthquake Recovery Authority (CERA)

CERA was established on 28 March 2011 to take control of the recovery of Christchurch. It uses powers established by the Canterbury Earthquake Recovery Act enacted on 18 April 2011. This act gives the Chief Executive Officer of CERA wide powers in relation to building safety, demolition and repair. Two relevant sections are:

Section 38 – Works

This section outlines a process in which the Chief Executive can give notice that a building is to be demolished and if the owner does not carry out the demolition, the Chief Executive can commission the demolition and recover the costs from the owner, or by placing a charge on the owner’s land.

Section 51 – Requiring Structural Survey

This section enables the Chief Executive to require a building owner, insurer or mortgagee to carry out a full structural survey before the building is re-occupied.

We understand that CERA requires a detailed engineering evaluation to be carried out for all buildings (other than those exempt from the Earthquake Prone Building definition in the Building Act). CERA has adopted the Detailed Engineering Evaluation Procedure (DEEP) document (draft) issued by the Structural Engineering Society (SESOC) on 19 July 2011. This document sets out a methodology for both initial qualitative and detailed quantitative assessments.

It is anticipated that a number of factors, including the following, will determine the extent of evaluation and strengthening level required:
1. The importance level and occupancy of the building.

2. The placard status and amount of damage.

3. The age and structural type of the building.

Any building with a capacity of less than 34% of New Building Standard (NBS) (including consideration of critical structural weaknesses) will need to be strengthened to a target of 67% as required by the CCC Earthquake Prone Building Policy.

2.2 Building Act

Several sections of the Building Act are relevant when considering structural requirements:

Section 112 - Alterations

This section requires that an existing building complies with the relevant sections of the Building Code to at least the extent that it did prior to the alteration.

This effectively means that a building cannot be weakened as a result of an alteration (including partial demolition).

Section 115 – Change of Use

This section requires that the territorial authority (in this case Christchurch City Council) is satisfied that the building with a new use complies with the relevant sections of the Building Code ‘as near as is reasonably practicable’.

This is typically interpreted by CCC as being 67% of the strength of an equivalent new building. This is also the minimum level recommended by the New Zealand Society for Earthquake Engineering (NZSEE).

Section 121 – Dangerous Buildings

This section was extended by the Canterbury Earthquake (Building Act) Order 2010, and defines a building as dangerous if:

1. in the ordinary course of events (excluding the occurrence of an earthquake), the building is likely to cause injury or death or damage to other property; or
2. in the event of fire, injury or death to any persons in the building or on other property is likely because of fire hazard or the occupancy of the building; or
3. there is a risk that the building could collapse or otherwise cause injury or death as a result of earthquake shaking that is less than a ‘moderate earthquake’ (refer to Section 122 below); or
4. there is a risk that other property could collapse or otherwise cause injury or death; or
5. a territorial authority has not been able to undertake an inspection to determine whether the building is dangerous.
Section 122 – Earthquake Prone Buildings (EPB)

This section defines a building as earthquake prone if its ultimate capacity would be exceeded in a ‘moderate earthquake’ and it would be likely to collapse causing injury or death, or damage to other property.

A moderate earthquake is defined by the building regulations as one that would generate loads 33% of those used to design an equivalent new building.

Section 124 – Powers of Territorial Authorities

This section gives the territorial authority the power to require strengthening work within specified timeframes or to close and prevent occupancy to any building defined as dangerous or earthquake prone.

Section 131 – Earthquake Prone Building Policy

This section requires the territorial authority to adopt a specific policy for earthquake prone, dangerous and insanitary buildings.

2.3 Christchurch City Council Policy

Christchurch City Council adopted their Earthquake Prone, Dangerous and Insanitary Building Policy in 2006. This policy was amended immediately following the Darfield Earthquake on 4 September 2010.

The 2010 amendment includes the following:

1. a process for identifying, categorising and prioritising Earthquake Prone Buildings, commencing on 1 July 2012;

2. a strengthening target level of 67% of a new building for buildings that are Earthquake Prone;

3. a timeframe of 15-30 years for Earthquake Prone Buildings to be strengthened; and

4. repair works for buildings damaged by earthquakes will be required to comply with the above.

The council has stated their willingness to consider retrofit proposals on a case by case basis, considering the economic impact of such a retrofit.

If strengthening works are undertaken, a building consent will be required. A requirement of the consent will require upgrade of the building to comply ‘as near as is reasonably practicable’ with:

- The accessibility requirements of the Building Code.
- The fire requirements of the Building Code. This is likely to require a fire report to be submitted with the building consent application.
2.4 Building Code

The Building Code outlines performance standards for buildings and the Building Act requires that all new buildings comply with this code. Compliance documents published by The Department of Building and Housing can be used to demonstrate compliance with the Building Code.

On 19 May 2011, Compliance Document B1: Structure was amended to include increased seismic design requirements for Canterbury as follows:

- 36% increase in the basic seismic design load for Christchurch (Z factor increased from 0.22 to 0.3);
- Increased serviceability requirements.

2.5 Institution of Professional Engineers New Zealand (IPENZ) Code of Ethics

One of the core ethical values of professional engineers in New Zealand is the protection of life and safeguarding of people. The IPENZ Code of Ethics requires that:

Members shall recognise the need to protect life and to safeguard people, and in their engineering activities shall act to address this need.

1.1 Giving priority to the safety and well-being of the community and having regard to this principle in assessing obligations to clients, employers and colleagues.

1.2 Ensuring that reasonable steps are taken to minimise the risk of loss of life, injury or suffering which may result from your engineering activities, either directly or indirectly.

All recommendations on building occupancy and access must be made with these fundamental obligations in mind.

3 Earthquake Resistance Standards

For this assessment, the building’s earthquake resistance is compared with the current New Zealand Building Code requirements for a new building constructed on the site. This is expressed as a percentage of new building standard (%NBS). The loadings are in accordance with the current earthquake loading standard NZS1170.5 [1].

A generally accepted classification of earthquake risk for existing buildings in terms of % NBS that has been proposed by the NZSEE 2006 [2] is presented in Figure 1 below.
Table 1 below compares the percentage NBS to the relative risk of the building failing in a seismic event with a 10% risk of exceedance in 50 years (i.e. 0.2% in the next year). It is noted that the current seismic risk in Christchurch results in a 6% risk of exceedance in the next year.

Table 1: % NBS compared to relative risk of failure

<table>
<thead>
<tr>
<th>Percentage of New Building Standard (%NBS)</th>
<th>Relative Risk (Approximate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>100</td>
<td><1 time</td>
</tr>
<tr>
<td>80-100</td>
<td>1-2 times</td>
</tr>
<tr>
<td>67-80</td>
<td>2-5 times</td>
</tr>
<tr>
<td>33-67</td>
<td>5-10 times</td>
</tr>
<tr>
<td>20-33</td>
<td>10-25 times</td>
</tr>
<tr>
<td><20</td>
<td>>25 times</td>
</tr>
</tbody>
</table>

3.1 Minimum and Recommended Standards

Based on governing policy and recent observations, Opus makes the following general recommendations:

3.1.1 Occupancy

- The Canterbury Earthquake Order\(^1\) in Council 16 September 2010, modified the meaning of ‘dangerous building’ to include buildings that were identified as being Earthquake Prone Buildings (EPB). Such a building would be issued with a Section 124 notice by the Territorial Authority, or CERA acting on their behalf, once they are

\(^1\) This Order only applies to buildings within the Christchurch City, Selwyn District and Waimakariri District Councils authority
made aware of our assessment. Based on information received from CERA to date, this notice is likely to prohibit occupancy of the building (or parts of it) until its seismic capacity is improved to the point that it is no longer considered an EPB.

3.1.2 Cordonning

- Where there is an overhead falling hazard, or potential collapse hazard of the building, the areas of concern should be cordoned off in accordance with current CERA/Christchurch City Council guidelines.

3.1.3 Strengthening

- Industry guidelines (NZSEE 2006 [2]) strongly recommend that every effort be made to achieve improvement to at least 67%NBS. A strengthening solution to anything less than 67%NBS would not provide an adequate reduction to the level of risk.

- It should be noted that full compliance with the current building code requires building strength of 100%NBS.

3.1.4 Our Ethical Obligation

- In accordance with the IPENZ code of ethics, we have a duty of care to the public. This obligation requires us to identify and inform CERA of potentially dangerous buildings; this would include earthquake prone buildings.
4 Building Description

4.1 General

The Akaroa Place de la Poste toilet building is situated on flat section and is approximately 8.7m long in the east-west direction and 3.0m wide in the north-south direction. The building is a single storey timber framed structure with a steep timber truss roof. The apex of the roof is approximately 4.2m above the ground and the building has a wall height of approximately 2.0m. The structure is founded on a slab on grade.

We have no information on when the building was constructed.

4.2 Gravity Load Resisting System

The roof is a timber truss system with corrugated iron sheeting supported on the timber framed walls. The walls are supported on the concrete slab foundation.

4.3 Seismic Load Resisting System

Lateral resistance for the structure in both directions is provided through the internal and external sheet linings of the timber walls.

Lateral support of the roof is supplied by the corrugated iron sheeting and the sheet ceiling lining.

5 Survey

The structure currently has no placard.

No copies of the design calculations or structural drawings have been obtained for this structure but we have measured the structure accurately and made calculations based on these figures.

Non-intrusive inspections have been used to confirm the structural systems, and to identify details which required particular attention.

6 General Observations

The structure appears to be in very good condition and has performed well in the Canterbury seismic events. No earthquake damage to the structure was noted.

Due to a lack of observed ground damage, a geotechnical assessment has not been completed for this site.

7 Detailed Seismic Assessment

7.1 Seismic Coefficient Parameters

The seismic design parameters based on current design requirements from NZS1170.5:2004 and the NZBC clause B1 for this structure are:
7.2 Detailed Seismic Assessment Results

As the construction details of the sheet linings providing the lateral bracing are unknown, we have conservatively assumed that the timber walls will provide at least 1kN/m (20 BU/m) of lateral load resistance.

No signs of settlement or distress of the foundations were noted, therefore we have assumed that their performance is acceptable for a structure of this size and type.

A summary of the structural performance of the structure is shown in the following table. Note that the values given represent the worst performing elements in the structure, as these effectively define the structure’s capacity. Other elements within the structure may have significantly greater capacity when compared with the governing element.

<table>
<thead>
<tr>
<th>Structural Element/System</th>
<th>Failure mode and description of limiting criteria</th>
<th>%NBS based on calculated capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse direction</td>
<td>Bracing capacity of the walls</td>
<td>>100%</td>
</tr>
<tr>
<td>Longitudinal direction</td>
<td>Bracing capacity of the walls</td>
<td>>100%</td>
</tr>
<tr>
<td>Roof diaphragm</td>
<td>Bracing capacity of roof sarking.</td>
<td>>100%</td>
</tr>
<tr>
<td>Foundations</td>
<td>Without an intrusive investigation the capacity of the foundation cannot be determined but, due to the small loads being imparted on them, it is assumed that their capacity is greater than 100%NBS.</td>
<td>Not calculated</td>
</tr>
</tbody>
</table>

7.3 Discussion of Results

The structure has a calculated capacity of greater than 100%NBS. This is above the threshold limit for structures classified as ‘Earthquake Prone’ which is one third (33%) of the seismic performance specified in the current loading standard for new structures (NBS). The structure is therefore classed as having a low earthquake risk in accordance with the NZSEE guidelines.
7.4 Limitations and Assumptions in Results

Our analysis and assessment is based on an assessment of the structure in its undamaged state.

The results have been reported as a %NBS and the stated value is that obtained from our analysis and assessment. Despite the use of best national and international practice in this analysis and assessment, this value contains uncertainty due to the many assumptions and simplifications which are made during the assessment. These include:

- simplifications made in the analysis, including boundary conditions such as foundation fixity;
- assessments of material strengths based on site inspections.
- the normal variation in material properties which change from batch to batch; and

8 Conclusions

(a) The structure has a seismic capacity of greater than 100%NBS and therefore has a low earthquake risk.

9 Recommendations

As the structure exceeds the required %NBS and due to the lack of visible damage, no further action is recommended.

10 Limitations

(a) This report is based on an inspection of the structure with a focus on the damage sustained from the 22 February 2011 Canterbury Earthquake and aftershocks only.

(b) Our professional services are performed using a degree of care and skill normally exercised under similar circumstances by reputable consultants practicing in this field at the time.

(c) This report is prepared for the CCC to assist with assessing remedial works required for council structures and facilities. It is not intended for any other party or purpose.

11 References

Appendix A – Photographs
Photo 1: The north wall of the building.

Photo 2: The south and west walls of the building.
Photo 3: View of the east wall.

Photo 4: View of the roof trusses.
Appendix B – Building Plan
Appendix C – CERA DEEP Data Sheet
Location

Building Name: Akaroa Place de la Poste
Street: Toilets
Reviewer: Dave Dekker
Unit No: Street CPE
EEngine No: 1003026
Building Address: 2 Rue Balguerie
Company Name: Opus International Consultants
Legal Description: Company project number: 6QUCC1.40
Company Phone Number: 03 363 5400
GPS south: Date of submission: 19-Nov-12
GPS east: Inspection Date: 11-Jul-12
Building Unique Identifier (CCC): PRK 3644 BLDG 002 EQ2

Is there a full report with this summary? Yes

Site

<table>
<thead>
<tr>
<th>Site slope</th>
<th>Site Class (by NZS1170.5)</th>
<th>Proximity to waterway (m, if <100m)</th>
<th>Proximity to cliff base (m, if <100m)</th>
<th>Approx site elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>flat</td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>2.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil type</th>
<th>Soil Profile (if available)</th>
</tr>
</thead>
<tbody>
<tr>
<td>silt</td>
<td></td>
</tr>
</tbody>
</table>

Building

<table>
<thead>
<tr>
<th>No. of storeys above ground</th>
<th>No. of storeys below ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Building height (m)</th>
<th>Age of Building (years)</th>
<th>Strengthening present</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.20</td>
<td></td>
<td>If so, when (year)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>And what level (%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use (ground floor)</th>
<th>Use notes (if required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td></td>
</tr>
</tbody>
</table>

Gravity Structure

<table>
<thead>
<tr>
<th>Gravity System</th>
<th>Roofs</th>
<th>Floor</th>
<th>Columns</th>
<th>Walls</th>
</tr>
</thead>
<tbody>
<tr>
<td>load bearing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roof truss type</th>
<th>truss depth, purlin type and cladding</th>
<th>slab thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>timber truss</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lateral load resisting structure

<table>
<thead>
<tr>
<th>Lateral system along</th>
<th>Lateral system across</th>
<th>Ductility assumed, μ_0</th>
<th>Period along</th>
<th>Period across</th>
</tr>
</thead>
<tbody>
<tr>
<td>lightweight timber</td>
<td>lightweight timber</td>
<td>3.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total deflection (A.S.I) (mills)</th>
<th>Maximum Intensity Deflection (A.S.I) (mills)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>estimate or calculation</td>
</tr>
</tbody>
</table>

Separations

<table>
<thead>
<tr>
<th>north (mm)</th>
<th>east (mm)</th>
<th>south (mm)</th>
<th>west (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>leave blank if not relevant</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non-structural elements

<table>
<thead>
<tr>
<th>Stairs</th>
<th>Wall Cladding</th>
<th>Roof Cladding</th>
<th>Glazing</th>
<th>Services/Line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metal</td>
<td>describe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Available documentation

<table>
<thead>
<tr>
<th>Architectural</th>
<th>Structural</th>
<th>Mechanical</th>
<th>Electrical</th>
<th>Geotech</th>
<th>report</th>
</tr>
</thead>
<tbody>
<tr>
<td>original designer name/date</td>
<td></td>
</tr>
</tbody>
</table>

Damage

Site

<table>
<thead>
<tr>
<th>Site performance</th>
<th>Describe damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Refer DEE Table 4-2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Settlement</th>
<th>Differential settlement</th>
<th>Liquefaction</th>
<th>Lateral Spread</th>
<th>Ground cracks</th>
<th>Damage to area</th>
<th>Notes (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Building

Current Placed Status: 0% NBS

<table>
<thead>
<tr>
<th>Damage ratio</th>
<th>Damage (after)</th>
<th>Describe</th>
<th>Damage (before)</th>
<th>Damage (after)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>100% NBS</td>
<td>Describe</td>
<td>100% NBS</td>
<td>Damage (after)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Damage (after)</th>
<th>Damage (before)</th>
<th>Damage (after)</th>
<th>Damage (before)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% NBS</td>
<td>100% NBS</td>
<td>100% NBS</td>
<td>100% NBS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Damage (after)</th>
<th>Damage (before)</th>
<th>Damage (after)</th>
<th>Damage (before)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% NBS</td>
<td>100% NBS</td>
<td>100% NBS</td>
<td>100% NBS</td>
</tr>
</tbody>
</table>

Design Damage Ratio:

\[
\text{Damage Ratio} = \left(\frac{\text{%NBS (after)}}{\text{%NBS (before)}} \right) \times 100\%
\]

Recommendations

<table>
<thead>
<tr>
<th>Level of repair/strengthening required</th>
<th>Building Consent required</th>
<th>Interim occupancy recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe</td>
<td>Describe</td>
<td>Describe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along</th>
<th>Across</th>
<th>%NBS before IEP</th>
<th>%NBS after IEP</th>
<th>%NBS from IEP below</th>
<th>%NBS from IEP below</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Note: Define along and across in detailed report!